The formation of plectonemic joints by the recA protein of Escherichia coli. Requirement for ATP hydrolysis.
نویسندگان
چکیده
Formation of D-loops during the exchange of strands between a circular single-stranded DNA and a completely homologous linear duplex proceeds optimally when the duplex DNA is added to the complex of recA protein and single-stranded DNA formed in the presence of single-stranded DNA-binding protein and ATP. D-loops are undetectable when 200 microM adenosine 5'-O-(thiotriphosphate) is substituted for ATP. D-loops can be formed in the presence of adenosine 5'-O-(thiotriphosphate) if recA protein is the last component added to the reaction. However, these D-loops, which depend upon homologous sequences, are unstable upon deproteinization and are formed to a more limited extent than the structures formed with ATP. This finding indicates that D-loops formed under these conditions may be largely nonintertwined paranemic structures rather than plectonemic structures in which two of the strands are interwoven. When adenosine 5'-O-(thiotriphosphate) is added to an ongoing reaction containing ATP, formation of plectonemic structures and ATP hydrolysis is inhibited to an equivalent extent. We, therefore, conclude that ATP hydrolysis is required for the formation of plectonemic structures.
منابع مشابه
Electron microscopic visualization of the RecA protein-mediated pairing and branch migration phases of DNA strand exchange.
The RecA protein of Escherichia coli will drive the pairing and exchange of strands between homologous DNA molecules in a reaction stimulated by single-stranded binding protein. Here, reactions utilizing three homologous DNA pairs which can undergo both paranemic and plectonemic joining were examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) D...
متن کاملDisassembly of Escherichia coli RecA E38K/DeltaC17 nucleoprotein filaments is required to complete DNA strand exchange.
Disassembly of RecA protein subunits from a RecA filament has long been known to occur during DNA strand exchange, although its importance to this process has been controversial. An Escherichia coli RecA E38K/DeltaC17 double mutant protein displays a unique and pH-dependent mutational separation of DNA pairing and extended DNA strand exchange. Single strand DNA-dependent ATP hydrolysis is catal...
متن کاملHydrolysis of nucleoside triphosphates catalyzed by the recA protein of Escherichia coli. Steady state kinetic analysis of ATP hydrolysis.
The DNA-dependent ATPase activity of the recA protein of Escherichia coli shows a complex dependence on ATP concentration. With a single-stranded (SS) DNA cofactor, the Hill coefficient for ATP is 3.3 at pH 8.1 and 1.4 at pH 6.2. With a double-stranded (DS) DNA cofactor, the Hill coefficient is 3.3 at pH 6.2 (no reaction is detectable at pH 8.1). In the presence of SS DNA, the Km for ATP is 20 ...
متن کاملProperties of the high-affinity single-stranded DNA binding state of the Escherichia coli recA protein.
The properties of the high-affinity single-stranded DNA (ssDNA) binding state of Escherichia coli recA protein have been studied. We find that all of the nucleoside triphosphates that are hydrolyzed by recA protein induce a high-affinity ssDNA binding state. The effect of ATP binding to recA protein was partially separated from the ATP hydrolytic event by substituting calcium chloride for magne...
متن کاملDefective dissociation of a "slow" RecA mutant protein imparts an Escherichia coli growth defect.
The RecA and some related proteins possess a simple motif, called (KR)X(KR), that (in RecA) consists of two lysine residues at positions 248 and 250 at the subunit-subunit interface. This study and previous work implicate this RecA motif in the following: (a) catalyzing ATP hydrolysis in trans,(b) coordinating the ATP hydrolytic cycles of adjacent subunits, (c) governing the rate of ATP hydroly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 260 1 شماره
صفحات -
تاریخ انتشار 1985